GSM

Global System Mobile Communications. Европейский цифровой стандарт, разработанный в целях совместимости сотовой связи в  Европе, в дальнейшем  распространился по всёму миру,  в настоящее время  насчитывается более 700 сетей  GSM  которыми охвачено более 210 стран.   Количество абонентов сотовых сетей стандарта GSM во всем мире приближается к 2 млрд. человек.   В большинстве стран стандарт функционирует вблизи частот 900 -1800 МГц.

История GSM

В Европе начале 80-х аналоговые системы сотовой телефонии находились в стадии быстрого роста, особенно в Скандинавии и Великобритании, а также во Франции и Германии. Каждое государство развивало свою собственную систему, которая была несовместима с другими по оборудованию и функционированию. Такая ситуация оказалась нежелательной, не только из-за ограниченности действия мобильных устройств в пределах своих стран, но и из-за ограниченности рынка по отношению к каждому типу оборудования, что не позволяло создать оправданной маркетинговой политики.

В Европе это осознали достаточно рано, и в 1982г. Конференция Европейских Почтово-Телеграфных Служб (Conference of European Posts and Telegraphs - CEPT) сформировала группу, названную Groupe Special Mobile (GSM), для изучения и развития паневропейской наземной системы мобильной связи общего назначения. Предполагаемая система должна была удовлетворять определенным критериям:

Субъективно хорошее качество речи
Низкая стоимость терминалов и услуг
Поддержка международного роуминга
Поддержка портативных терминалов
Поддержка определенного набора услуг и служб
Спектральная эффективность
Совместимость с системами ISDN

В 1989 г. функции группы GSM были переданы Европейскому Институту Телекоммуникационных Стандартов (European Telecommunication Standards Institute - ETSI), и фаза I спецификаций GSM была опубликована в 1990 г. Коммерческое использование началось в середине 1991 г., и к 1993 г. уже было 36 сетей GSM в 22 странах [6]. Стандартизованные в Европе, сети GSM стали не только европейским стандартом. Свыше 200 сетей GSM (включая DCS1800 и PCS1900) функционируют в 110 странах мира. В начале 1994 г. было около 1.3 миллиона подписчиков в мире [18], число которых возросло до 55 миллионов к октябрю 1997г. Сейчас сети GSM существуют на всех континентах, и акроним GSM обозначает теперь "Global System for Mobile communications".

Разработчики GSM избрали не испытанный к тому времени цифровой принцип построения, в противоположность таким признанным в качестве стандарта системам, как AMPS в США и TACS в Великобритании. Они рассчитывали, что прогресс в алгоритмах сжатия и обработчиках цифровых сигналов позволят удовлетворить первоначальным требованиям и постоянно улучшать систему в отношении цены и качества. Свыше 8 тыс. страниц рекомендаций GSM рассчитаны на гибкость и изобретательность поставщиков, но в то же время обеспечивают достаточную степень стандартизации, чтобы гарантировать взаимодействие всех компонент единой системы. Это было достигнуто описанием функциональности и интерфейса всех функциональных единиц, определенных в системе.

Услуги, поддерживаемые GSM

С самого начала, разработчики GSM рассчитывали на совместимость с системами ISDN в отношении предоставляемых услуг и управления передачи сигнала. Однако, ограничения радиопередачи, в терминах ширины полосы и стоимости, не позволяют достись скорости 64 kbps стандартного B-канала системы ISDN.

Преимущественные услуги, основанные на стандарте GSM, сосредоточены в телефонии. Как и в других видах связи на основе GSM, передаваемая речь подлежит оцифровке и передаче по сети GSM в виде цифрового потока.

Предоставляется целое множество услуг передачи данных. Пользователи GSM могут посылать и получать данные на скоростях до 9600 bps пользователям обычных телефонных сетей (Plain Old Telephone Service - POTS), а также сетей ISDN, Packet Switched Public Data Networks и Circuit Switched Public Data Networks, используя множество методов доступа и протоколов, таких как X.25 или X.32. Так как GSM - цифровая сеть, модем не требуется для взаимодействия между пользователем и сетью GSM, но аудиомодем нужен сети GSM для взаимодействия с сетями POTS.

Другие услуги передачи данных фключают факсовую связь класса 3, как описано в рекомендации T.30 ITU-T (International Telecommunication Union - Международный телекоммуникационный союз), которая поддерживается при использовании соответствующего факс-адаптера. Уникальная особенность GSM, не поддерживаемая более старыми аналоговыми системами, - это служба коротких сообщений SMS (Short Message Service). SMS - это двунаправленная служба для коротких алфавитно-цифровых сообщений (до 160 байт).

Дополнительные услуги включают несколько видов перенаправления вызовов (таких, как перенаправление вызова, когда мобильный абонент находится вне зоны действия сети), и обеспечение соединения для исходящих и входящих звонков при международном роуминге. Многие дополнительные услуги будут обеспечены в спецификациях фазы II, например, определение номера вызывающего абонента, ожидание вызова, конференц-связь.

Архитектура сети GSM

Сеть GSM состоит из нескольких функциональных единиц, чьи функции и интерфейсы специфицированы. Сеть может быть разделена на 3 обширных части: мобильный телефон (МТ), который находится у абонента, базовая станция (БС), которая контролирует радиосвязь с МТ, и сетевая подсистема, основной частью которой является центр коммутации (КЦ), выполняющий коммутацию вызовов между мобильными абонентами или между мобильными абонентами и абонентами фиксированных сетей. КЦ также осуществляет управление при перемещении абонентов.

Мобильный телефон

МТ состоит из терминала (непосредственно телефонного аппарата) и смарт-карты SIM (Subscriber Identity Module). SIM обеспечивает персональную мобильность абонента, а именно то, что абонент имеет доступ к услугам связи независимо от терминала. Вставив SIM-карту в другой терминал стандарта GSM, абонент способен принимать и делать звонки с этого терминала, пользоваться всеми другими услугами связи.

Терминал однозначно идентифицируется кодом IMEI (International Mobile Equipment Identity). SIM-карта модержит код IMSI (International Mobile Subscriber Identity), используемый дли идентификации абонента в системе, секретный ключ для проверки подлинности, и другую информацию. Коды IMEI и IMSI независимы. SIM-карта может быть защищена от несанкционированного использования паролем или персональным идентификационным номером.

Подсистема базовой станции

Подсистема базовой станции состоит из двух частей: из базовой станции БС, представляющей собой приемо-передатчик, и контроллера базовой станции.

БС определяет соту и взаимодействует в соответствии с протоколами радиосвязи с МТ. В больших перенаселенных районах, где будет использоваться потенциально большое количество БС, непременными требованиями к БС являются высокая производительность, надежность, портативность и минимальная цена.

Контроллер БС управляет радиоресурсами одной или нескольких БС. Он производит настройку радиоканалов, переключение частот и хэндоверы. Контроллер осуществляет соединение МТ с КЦ.

Сетевая подсистема

Центральной компонентой сетевой подсистемы является центр коммутации - КЦ. Он действует аналогично узлу коммутации других сетей, и дополнительно обеспечивает функциональность, необходимую для взаимодействия с мобильным абонентом: регистрацию, проверку подлинности, обновление местоположения, хэндоверы и маршрутизацию вызовов абоненту в роуминге. Эти услуги обеспечиваются в сопряжении с другими функциональными единицами, все вместе образующими сетевую подсистему. КЦ обеспечивает соединение с фиксированными сетями.

Базы данных HLR (Home Location Register) и VLR (Visitor Location Register), вместе с КЦ обеспечивают маршрутизацию звонков и возможности роуминга в сетях GSM. HLR содержит административную информацию о всех абонентах, зарегистрированных в соответствующей сети GSM, вместе с текущим местоположением МТ. Местоположение МТ хранится в форме адреса сигнала от VLR, связанной с МТ в текущий момент времени. Логически существует только одна HLR на всю сеть GSM, хотя она может быть описана и как распределенная база данных.

База данных VLR содержит избранную административную информацию из HLR, необходимую для контроля вызовов и обеспечения услуг абоненту, для всех МТ, расположенных в текущий момент времени в географической области, контролируемой VLR. Хотя эта функциональная единица может быть описана как независимый модуль, все производители коммутирующего оборудования к настоящему времени объединяют VLR с КЦ, так что географическая область, контролируемая КЦ, совпадает с областью, контролируемой VLR, упрощая обработку сигнала. Следует заметить, что сам КЦ не содержит никакой информации о конкретных МТ - эта информация сосредоточена в базах данных HLR и VLR.

Две другие базы данных используются в целях проверки подлинности и обеспечения безопасности. База данных EIR (Equipment Identity Register) представляет собой базу данных, содержащую список всего действующего мобильного оборудования сети, где каждый МТ идентифицируется кодом IMEI. В случае, если функционирующий МТ украден или не принадлежит к типу, допустимому к работе в сети, его IMEI помечается недействующим. AuC (Authentication Center) представляет собой защищенную базу данных, хранящую копии секретных ключей, содержащихся в SIM-картах абонентов, которые используются для проверки подлинности и шифрации радиоканалов.

Многостанционный доступ и структура канала

Поскольку радиоэфир - это ограниченный ресурс, разделяемый всеми абонентами, должен быть определен алгоритм деления частотных полос среди многих абонентов. Такой метод, избранный GSM, представляет собой сочетание многостанционного доступа с временным и частотным делением (соответственно TDMA и FDMA). FDMA включает деление по частотам полосы шириной в 25 МГц на 124 полосы с несущими частотами, разделенными 200 кГц. Одна или более несущих частот привязаны к каждой БС. Каждая из этих частот разделена во времени, используя схему TDMA. Фундаментальной единицей времени в схеме TDMA является период прохождения пакета (ППП) и длится 15/26 миллисекунды (приблизительно 0.577 мс). 8 ППП группируются во фрейм TDMA (120/26 мс, или примерно 4.615 мс), который формирует основную единицу для определения логических каналов. Один физический канал представляет собой один ППП на фрейм TDMA.

Каналы определяются по количеству и положению соответствующих ППП. Все эти определения циклические, и картина целиком повторяется приблизительно каждые 3 часа. Каналы делятся на выделяемые каналы, предназначенные для МТ при прохождении вызовов, и каналы общего назначения, используемые МТ в состоянии ожидания.

Разговорные каналы

Разговорный канал TCH (traffic channel) используется для передачи речи и данных. Разговорные каналы определяются, используя 26-фреймовый мультифрейм, или группу из 26 фреймов TDMA. Длина этого мультифрейма 120 мс. Помимо этих 26 фреймов, 24 используются для трафика, 1 для контроля канала SACCH (Slow Associated Control Channel) и 1 пока не используется. Прямой и обратный разговорные каналы (от МТ к БС и наоборот) разделены во времени тремя ППП, так что МТ не приходится одновременно принимать и передавать, упрощая тем самым элетронное оборудование.

Вдобовок к этим полноскоростным разговорным каналам, в стандарте определены также полускоростные разговорные каналы, хотя они еще не реализуются. Полускоростные разговорные каналы эффективно удваивают емкость системы, если действуют вкупе с полускоростными кодировщиками речи (т.е. если речь кодируется со скоростью примерно в 7 kbps вместо 13). Специфицированы также 8-скоростные разговорные каналы, предназначенные для передачи служебных сигналов. В рекомендациях они называются Stand-alone Dedicated Control Channels (SDCCH).

Каналы управления

Каналы общего назначения могут востребоваться мобильными телефонами и в режиме ожидания, и в режиме приема/передачи. Каналы общего назначения используется МТ в режиме ожидания для обмена служебной информацией, требуемой для переключения в разговорный режим. МТ, уже находящиеся в таком режиме, осуществляют мониторинг окружающих их БС для хэндоверов и в других целях. Каналы общего назначения определены как 51-фреймовые мультифреймы.

Кодирование речи

GSM - это цифровая система, поэтому речь, которая имеет сущеществено аналоговую природу, должна быть оцифрована. Методом, используемым в системах ISDN и в нынешних телефонных системах многостанционных голосовых линий по высокоскоростным стволам и оптоволоконым линиям, является метод PCM (Pulse Coded Modulation). Скорость исходящего потока в методе PCM равняется 64 kbps и превышает возможности радиосвязи. Сигнал такого объема, несмотря на простоту описания, является избыточным. Группа GSM изучила несколько алгоритмов речевого кодирования по отношению к субъективному качеству речи и сложности (последнее отражается на стоимости, задержке при обработке и потреблению мощности) и остановилась на методе RPE-LPC (Regular Pulse Excited -- Linear Predictive Coder) с циклом Long Term Predictor. Коротко говоря, информация из речевых посылок, предшествующих текущей посылке, используется для предсказания ее структуры благодаря тому, что эти посылки не меняются очень быстро. Коэффициенты линейной комбинации предыдущих посылок плюс закодированная форма остатка, представляющая собой разницу между предсказанной и реально имеющей место посылкой, представляют собой сигнал. Речь делиться на 20-миллисекундные посылки, каждая из которых кодируется в 260 бит, давая общую скорость потока в 13 kbps. Это - так называемое полноскоростное (Full-Rate - FR) кодирование речи. Некоторое время назад алгоритм улучшенного полноскоростного кодирования (Enhanced Full-Rate  - EFR) был реализован некоторыми североамериканскими операторами в стандарте GSM1900. По их словам, это повышает качество передачи речи, используя ту же самую скорость в 13 kbps.

Многоканальное выравнивание

В диапазоне около 900 МГц радиоволны отражаются от всевозможных объектов - зданий, холмов, автомобилей, самолетов и т.д. Поэтому антенна принимает большое количество отраженных сигналов с различными фазовыми смещениями. Выравнивание необходимо для извлечения желаемого сигнала из нежелательных отраженных. Спецификация стандарта GSM не предполагает определенного алгоритма реализации такого выравнивания.

Частотный скачок

Мобильному телефону приходится быть частотно-подвижным, т.е. он должен быстро переключаться между частотами при передаче, приеме, мониторинге тайм-слотов в рамках одного фрейма TDMA. Стандарт GSM существенно использует такую частотную подвижность для реализации медленных частотных скачков, при которых МТ и БС передают каждый фрейм TDMA на разных несущих. Поскольку многоканальная радиопередача зависит от несущей, медленный частотный скачок смягчает эту проблему.

Прерывистая передача

Минимизация интерференции от разных каналов является целью любой системы сотовой связи, т.к. позволяет улучшить обслуживание соты данного размера или использовать соты меньшего размера, повышая тем самым общую емкость системы. Передача методом бланкирования DTX (Discontinuous Transmission) основана на том факте, что в обычном разговоре человек говорит менее 40% времени всего разговора [22], и основана на отключении передатчика на время молчания абонента. Дополнительным преимуществом DTX сниженное потребление энергии МТ.

Наиболее важной компонентой DTX является детектор голоса VAD (Voice Activity Detection). Он должен уметь отличать голос от шума - задача, нетривиальная сама по себе. Если сигнал неверно интерпретируется как шум, то передатчик отключается, и на другом конце тракта проявляется весьма раздражающий эффект, называемый обрезанием. Если, с другой стороны, шум неверно интерпретируется как сигнал слишком часто, то эффективность DTX значительно снижается. Другая проблема заключается в том, что когда передатчик отключен, на другом конце тракта стоит полная тишина вследствие цифровой природы GSM. Чтобы принимающий абонент не решил, что соединение разорвалось, его приемник создается искусственный шум, напоминающий по своим характеристикам фоновый шум со стороны передатчика.

Прерывистый прием

Другой способ уменьшения потребления энергии состоит в реализации мобильным телефоном прерывистого приема. Пейджинговый анал, используемый БС для передачи служебного сигнала о входящем звонке, разделяется на подканалы. Каждый МТ контролирует только свой собственный подканал. В моменты времени между последовательными сигналами, проходящими по этим подканалам, МТ переключается в "спящий" режим, практически не потребляя энергии.

Контроль мощности

Существует 5 классов МТ, соответствующих пикам мощности их передатчиков: 20, 8, 5, 2 и 0.8 Вт. Для минимизации межканальной интерференции и уменьшения энергопотребления, и МТ и БС функционируют на уровне наименьшей мощности, достаточном для требуемого качества сигнала.

МТ измеряет мощность сигнала или его качество (на основании его Bit Error Ratio), и передает информацию контроллеру БС, который решает, следует ли (и если следует, то когда) изменить уровень мощности. Контроль мощности должен производиться очень тщательно, иначе возникнет нестабильность.

Сетевые аспекты

Контроль качества передачи голоса или данных по радиосвязи представляет собой лишь часть всех функций мобильной сети сотовой связи. МТ в сети GSM доступен национальный и международный роуминг, который требует наличия соответствующих функций регистрации, проверки подлинности, маршрутизации вызовов и обновления местоположения, которые описаны в стандарте сетей GSM. Кроме тоого, тот факт, что географическая область, покрываемая сетью, разделяется на соты, требует описания механизма хэндоверов. Эти функции берет на себя сетевая подсистема.

Соответствующий протокол передачи служебной информации в GSM предполагает наличие управления радиоресурсами RR (Radio Resources Management), управления при перемещении MM (Mobility Management) и управления взаимодействием CM (Communication Management).

Управление радиоресурсами

Управление радиоресурсами отвечает за установление соединения между МТ и КЦ. Сессия RR всегда инициируется МТ посредством процедуры доступа как для исходящего звонка, так и для отклика на пейджинговое сообщение. В RR также входит контроль потребления энергии, прерывистые передача и прием, временное упреждение.

Хэндовер

В сотовых сетях устанавливаемые соединения не постоянны на протяжении всего разговора. Хэндовер представляет собой переключение происходящего разговора на другой канал или на другую соту. Исполнение и измерения, необходимые для хэндовера, входят в одну из основных функций RR.

Существует 4 различных типов хэндоверов в системе GSM, которые включают переключение вызова между каналами (тайм-слотами) в той же соте, между сотами (БС) под управлением контроллера БС, между сотами под управлением других контроллеров БС, но относящихся к одному и тому же КЦ, и между сотами, управляемыми различными КЦ.

Два первых типа хэндоверов, называемых внутренними хэндоверами, используют один и тот же контроллер БС. Для сохранения той же полосы передачи служебных сигналов они управляются контроллером БС без вовлечения КЦ, за исключением уведомления КЦ о завершении хэндовера. Два последних типа хэндоверов, называемых внешними хэндоверами, производятся при участии КЦ. Хэндоверы инициируются или МТ, или КЦ (как средство распределения общего трафика в сети).

Алгоритм принятия решения относительно инициации хэндовера не специфицирован в рекомендациях стандарта GSM. Обычно используются два основных алгоритма, оба тесно привязанных к контролю энергопотребления. Это связано с тем, что обычно контроллер БС не знает, связано ли плохое качество сигнала с многоканальной радиопередачей или с тем, что МТ переместился в другую соту. Особенно это актуально в небольших сотах для многонаселенных районов.

Алгоритм "минимально допустимой производительности" [3] отдает предпочтение контролю мощности перед хэндовером, так что когда сигнал ухудшается за пределами определенной области, уровень мощности МТ возрастает. Если дальнейшее увеличение мощности не улучшает качества сигнала, то производится хэндовер. Это - простейший и наиболее общий метод, но он приводит к "размазыванию" границ соты, когда МТ на пике мощности проходит некоторое расстояние за пределы первоначальной соты и оказывается в другой соте.

Метод "бюджета мощности" [3] использует хэндовер для поддержания или улучшения качества сигнала на том же самом или на более низком уровне мощности. При этом отдается предпочтение хэндоверу перед контролем мощности. Это позволяет избежать проблемы "размазывания" границ соты и снижает межканальную интерференцию, но сам метод является весьма сложным.

Управление при перемещении

Управление при перемещении (MM) включает в себя функции, необходимые для проверки подлинности и обеспечения безопасности при перемещениях абонента. Управление местоположением связано с процедурами, позволяющими системе определить текущее местоположение включенного МТ, чтобы могла быть произведена маршрутизация входящего вызова.

Обновление местоположения

Включенный МТ информируется о входящем вызове пейджинговым сообщением, посылаемым через канал PAGCH соты. Одной крайностью было бы направлять пейджинговое сообщение в каждую соту сети, что с очевидностью явилось бы пустой тратой радиополос. Другой крайностью было бы заставлять МТ уведомлять каждый раз систему посредством сообщений об обновлении своего местоположения при перемещении в другую соту, это привело бы к чрезмерным издержкам из-за большого количество обновляющих сообщений. Стандарт GSM предусматривает компромиссное решение, связанное с группировкой сот в зоны. Обновляющие сообщения требуются лишь при перемещении между такими зонами, и МТ уведомляются пейджинговыми сообщениями в соответствии с их текущими зонами. В целях повышения надежности, GSM также предполагает периодическое исполнение процедуры обновления местоположения.

Контроль подлинности и безопасности

Поскольку радиоэфир доступен кому угодно, проверка подлинности абонентов является очень важным элементом мобильной сети. Проверка подлинности предполагает участие двух сторон: SIM-карты в МТ и центра проверки подлинности AuC. Каждый абонент обладает секретным ключом, одна копия которого хранится на SIM-карте, а другая - в AuC. Во время проверки подлинности AuC генерирует случайное число, которое передается МТ. И МТ, и AuC используют это число вкупе с секретным ключом абонента и алгоритмом шифрации A3 для генерации подписанного отклика, который направляется обратно в AuC. Если число, которое отправил МТ, совпадает с числом, вычисленным AuC, абонент считается успешно прошедшим проверку [16].

Такое же первоначальное случайное число и код абонента также используются для вычисления секретного ключа по алгоритму A8. Этот шифр-ключ вместе с номером фрейма TDMA использует алгоритм A5 для создания 114-битной последовательности, которая XOR-ится со 114 битами отправляемого пакета. Такая шифрация, впрочем, представляется излишней, поскольку сигнал уже хорошо закодирован.

Другой уровень безопасности обеспечивается самим МТ, в противоположность мобильному абоненту. Как ранее упоминалось, терминал GSM идентифицируется уникальным номером IMEI. Список таких номеров в сети хранится в базе данных EIR. Статус, возвращаемый в базу данных EIR в ответ на запрос IMEI , может быть одним из следующих: "белый" список - терминалу разрешается подключиться к сети, "серый" список - терминал находится под наблюдением со стороны сети из-за возможных проблем, "черный" список - терминал идентифицируется или как украденный, или как принадлежащий к типу, не предназначенному для использования в сети. Такому терминалу не разрешается подключится к сети.

Управление взаимодействием

Управление взаимодействием CM отвечает за контроль вызовов CC (Call Control), управление услугами поддержки, и управление службой коротких сообщений.

Маршрутизация вызовов

В отличие от фиксированных сетей, где терминал постоянно подключен к центральному офису, абоненту сети GSM доступен национальный и международный роуминг. Номер абонента, используемый для вызова абонента, называется Mobile Subscriber ISDN (MSISDN), и определяется в соответствии с планом нумерации E.164. Этот номер включает код страны и национальный код зоны, идентифицирующий сотового оператора, обслуживающего абонента. Первые несколько цифр остальной части номера абонента могут обозначать базу данных HLR абонента.

Аспекты радиосвязи

ITU, управляющий выделением радиодиапазонов (среди многих других своих функций), выделил полосу 890-915 МГц для передачи сигнала от МТ к БС и полосу 935-960 МГц для передачи сигнала в обратном направлении, для мобильных сетей в Европе.

Стандарт GSM разработан для создания сотовых систем подвижной связи (ССПС) в следующих полосах частот: 890-915 МГц - для передачи подвижными станциями (линия "вверх"); 935-960 МГц - для передачи базовыми станциями.

Каждая из полос, выделенных для сетей GSM, разделяется на частотные каналы. Разнос каналов составляет 200 кГц, что позволяет организовать в сетях GSM 124 частотных канала. Частоты, выделенные для передачи сообщений подвижной станцией на базовую и в обратном направлении, группируются парами, организуя дуплексный канал с разносом 45 МГц. Эти пары частот сохраняются и при перескоках частоты. Каждая сота характеризуется фиксированным присвоением определенного количества пар частот.

Если обозначить FI (п) - номер несущей частоты в полосе 890-915 МГц, Fu (п) - номер несущей частоты в полосе 935-960 МГц, то частоты каналов определяются по следующим формулам:

FI (п) = 890,2 + 0,2 (п-1), МГц: Fu (п) = FI (п) + 45, МГц; 1 < п < 124.

Каждая частотная несущая содержит 8 физических каналов, размещенных в 8 временных окнах в пределах TDMA кадра и в последовательности кадров. Каждый физический канал использует одно и то же временное окно в каждом временном TDMA кадре.

До формирования физического канала сообщения и данные, представленные в цифровой форме, группируются и объединяются в логические каналы двух типов: каналы связи - для передачи кодированной речи или данных (ТСН); каналы управления - для передачи сигналов управления и синхронизации (ССН).

Более чем один тип логического канала может быть размещен на одном и том же физическом канале, но только при их соответствующей комбинации.

Структура логических каналов связи

В стандарте GSM различают логические каналы связи двух основных видов: TCH/F (Full Rate Traffic Channel) - канал передачи сообщений с полной скоростью

22,8 кбит/с (другое обозначение Вт);

TCH/H (Half Rate Traffic Channel) - канал передачи сообщений с половинной скоростью

11,4 кбит/с (другое обозначение Lm).

Один физический канал может представлять собой канал передачи сообщений с полной скоростью или два канала с половинной скоростью передачи. В первом случае канал связи занимает одно временное окно; во втором - два канала связи занимают то же самое временное окно, но с перемежением в соседних кадрах (т.е. каждый канал - через кадр).

В таблице  приведены номиналы частот каналов для приема (RX) и передачи (ТХ) базовыми станциями и соответствующие им номера каналов.

Channel
RX Frequency TX Frequency Channel RX Frequency TX Frequency
Decimal Hexadecimal MHz MHz Decimal Hexadecimal MHz MHz
1 01 890.20 935.20 63 3F 902.60 947.60
2 02 890.40 935.40 64 40 902.80 947.80
3 03 890.60 935.60 65 41 903.00 948.00
4 04 890.80 935.80 66 42 903.20 948.20
5 05 891.00 936.00 67 43 903.40 948.40
6 06 891.20 936.20 68 44 903.60 948.60
7 07 891.40 936.40 69 45 903.80 948.80
8 08 891.60 936.60 70 46 904,00 949.00
9 09 891.80 936.80 71 47 904.20 949.20
10 OA 892.00 937.00 72 48 904.40 949.40
11 892.20 937.20 73 49 904.60 949.60
12 ОС 892.40 937.40 74 4A 904.80 949.80
13 OD 892.60 937.60 75 905.00 950.00
14 OE 892.80 937.80 76 4C 905.20 950.20
15 OF 893.00 938.00 77 4D 905.40 950.40
16 10 893.20 938.20 78 4E 905.60 950.60
17 11 893.40 938.40 79 4F 905.80 950.80
18 12 893.60 938.60 80 50 906.00 951.00
19 13 893.80 938.80 81 51 906.20 951.20
20 14 894.00 939.00 82 52 906.40 951.40
21 15 894.20 939.20 83 53 906.60 951.60
22 16 894.40 939.40 84 54 906.80 951.80
23 17 894.60 939.60 85 55 907.00 952.00
24 18 894.80 939.80 86 56 907.20 952.20
25 19 895.00 940.00 87 57 907.40 952.40
26 1A 895.20 940.20 88 58 907.60 952.60
27 895.40 940.40 89 59 907.80 952.80
28 1C 895.60 940.60 90 5A 908.00 953.00
29 ID 895.80 940.80 91 908.20 953.20
30 IE 896.00 941.00 92 5C 908.40 953.40
31 . IF 896.20 941.20 93 5D 908.60 953.60
32 20 896.40 941.40 94 5E 908.80 953.80
33 21 896.60 941.60 95 5F 909.00 954.00
34 22 896.80 941.80 96 60 909.20 954.20
35 23 897.00 942.00 97 61 909.40 954.40
36 24 897.20 942.20 98 62 909.60 954.60
37 25 897.40 942.40 99 63 909.80 954.80
38 26 897.60 942.60 100 64 910.00 955.00
39 27 897.80 942.80 101 65 910.20 955.20
40 28 898.00 943.00 102 66 910.40 955.40
41 29 898.20 943.20 103 67 910.60 955.60
42 2A 898.40 943.40 104 68 910.80 955.80
43 898.60 943.60 105 69 911.00 956.00
44 2C 898.80 943.80 106 6A 911.20 956.20
45 2D 899.00 944.00 107 911.40 956.40
46 2E 899.20 944.20 108 6C 911.60 956.60
47 2F 899.40 944.40 109 6D 911.80 956.80
48 30 899.60 944.60 110 6E 912.00 957.00
49 31 899.80 944.80 111 6F 912.20 957.20
50 32 900.00 945.00 112 70 912.40 957.40
51 33 900.20 945.20 113 71 912.60 957.60
52 34 900.40 945.40 114 72 912.80 957.80
53 35 900.60 945.60 115 73 913.00 958.00
54 36 900.80 945.80 116 74 913,20 958.20
55 37 901.00 946.00 117 75 913.40 958.40
56 38 901.20 946.20 118 76 913.60 958.60
57 39 901.40 946.40 119 77 913.80 958.80
58 ЗА 901.60 946.60 120 78 914.00 959.00
59 901.80 946.80 121 79 914.20 959.20
60 ЗС 902.00 947.00 122 7A 914.40 959.40
61 3D 902.20 947.20 123 914.60 959.60
62 ЗЕ 902.40 947.40 124 7C 914.80 959.80

Для передачи кодированной речи и данных предназначены каналы связи следующих типов: TCH/FS (Full Rate Traffic Channel for Speech)

- канал для передачи речи с полной скоростью; TCH/HS (Half Rate Traffic Channel for Speech)

- канал для передачи речи с половинной скоростью; TCH/F 9,6 (Full Rate Traffic Channel for 9,6 kbit/s User Data)

- канал передачи данных с полной скоростью 9,6 кбит/с: TCH/F 4,8 (Full Rate Traffic Channel for 4,8 kbit/s User Data)

- канал передачи данных с полной скоростью 4,8 кбит/с; TCH/F 2,4 (Full Rate Traffic Channel for 2,4 kbit/s User Data)

- канал передачи данных с полной скоростью 2,4 кбит/с; ТСН/Н 4,8 (Half Rate Traffic Channel for 9,6 kbit/s User Data)

- канал передачи данных с половинной скоростью 4,8 кбит/с; СН/Н 2,4 (Half Rate Traffic Channel for 9,6 kbit/s User Data) - канал передачи данных с половинной скоростью 2,4 кбит/с.

Скорость передачи цифрового речевого сигнала в канале TCH/FS равна 13 кбит/с (за счет кодирования увеличивается до 22,8 кбит/с в канале TCH/F). 

Каналы связи могут передавать широкий набор информационных сообщений, но они не используются для передачи сигналов управления. Кроме того, для передачи данных по каналам связи могут использоваться разные протоколы, например, МККТТ Х.25.

Структура логических каналов управления

Каналы управления (ССН) обеспечивают передачу сигналов управления и синхронизации. Различают четыре вида каналов управления:

ВССН (Broadcast Control Channels) - каналы передачи сигналов управления; СССН (Common Control Channels) - общие каналы управления; SDCCH ( Stand-alone Dedicated Control Channels) - индивидуальные каналы управления; АССН (Associated Control Channels) - совмещенные каналы управления. Каналы передачи сигналов управления используются только в направлении с базовой станции на все подвижные станции. Они несут информацию, которая необходима подвижным станциям для работы в системе. Различают три вида каналов передачи сигналов управления ВССН:

FCCH (Frequency Correction Channel) - канал подстройки частоты, который используется для синхронизации несущей в подвижной станции. По этому каналу передается немодулированная несущая с фиксированным частотным сдвигом относительно номинального значения частоты канала связи;

SCH (Synchronization Channel) - канал синхронизации, по которому передается информация на подвижную станцию о кадровой (временной) синхронизации:

ВССН (Broadcast Control Channel) - канал управления передачей, обеспечивает передачу основных команд по управлению передачей (номер общих каналов управления тех из них, которые объединяются с другими каналами, в том числе и с физическими и т.д.).

Используются три типа общих каналов управления СССН:

РСН (Paging Channel) - канал вызова, используется только в направлении от базовой станции к подвижной для ее вызова:

RACH (Random Access Channel) - канал параллельного доступа, используется только в направлении от подвижной станции к базовой для запроса о назначении индивидуального канала управления;

AGCH (Access Grant Channel) - канал разрешенного доступа, используется только для передачи с базовой станции на подвижную (для выделения специального канала управления, обеспечивающего прямой доступ к каналу связи).

Выделенные индивидуальные каналы управления используются в двух направлениях для связи между базовой и подвижной станциями. Различают два вида таких каналов: SDCCH/4 (Stand-alone Dedicated Control Channel)

- индивидуальный канал управления, состоит из четырех подканалов; SDCCH/8 (Stand-alone Dedicated Control Channel) - индивидуальный канал управления, состоит из восьми подканалов.

Эти каналы предназначены для установки требуемого пользователем вида обслуживания. По ним обеспечивается запрос подвижной станции о требуемом виде обслуживания, контроль правильного ответа базовой станции и выделение свободного канала связи, если это возможно.

Совмещенные каналы управления также используются в двух направлениях между базовой и подвижной станциями. По направлению "вниз" они передают команду управления с базовой станции, а по направлению "вверх" - информацию о статусе подвижной станции. Различают два вида АССН:

FACCH (Fast Associated Control Channel) - быстрый совмещенный канал управления, служит для передачи команд при переходе подвижной станции из соты в соту, т.е. при "эстафетной передаче" подвижной станции;

SACCH (Slow Assocaited Control Channel) - медленный совмещенный канал управления, по направлению "вниз" передает команды для установки выходного уровня мощности передатчика подвижной станции. По направлению "вверх" подвижная станция посылает данные, касающиеся уровня установленной выходной мощности, измеренного приемником уровня радиосигнала и его качества.

В совмещенном канале управления всегда содержится один из двух каналов: канал связи или индивидуальный канал управления.

Совмещенные каналы управления всегда объединяются вместе с каналами связи или с индивидуальными каналами управления. При этом различают шесть видов объединенных каналов управления:

FACCH/F, объединенный с TCH/F; FACCH/H, объединенный с ТСН/Н; SACCH/TF, объединенный с TCH/F; SACCH/TH, объединенный с ТСН/Н; SACCH/C4, объединенный с SDCCH/4; SACCH/C8, объединенный с SDCCH/8.

Организация физических каналов

Для передачи каналов связи ТСН и совмещенных каналов управления FACCH и SACCH используется 26-кадровый мультикадр.  В полноскоростном канале связи в каждом 13-м TDMA кадре мультикадра передается пакет информации канала SACCH; каждый 26-й TDMA кадр мультикадра свободен. В полускоростном канале связи пакет информации канала SACCH передается в каждом 13-м и 26-м TDMA кадрах мультикадра.
Для одного физического канала в каждом TDMA кадре используется 114 бит. Так как в муль-тикадре для передачи канала связи ТСН используется 24 TDMA кадра из 26 и длительность мультикадра составляет 120 мс, общая скорость передачи информационных сообщений по ТСН каналу составляет 22,8 кбит/с. Канал SACCH занимает в полноскоростном канале связи только один TDMA кадр, то есть 114 бит, когда скорость передачи по SACCH каналу составит 950 бит/с. Полная скорость передачи в объединенном TCH/SACCH канале с учетом пустого (свободного) 26-го TDMA кадра составит 22,8 + 0,950 +0,950 - 24,7 кбит/с. за время 26-кадрового мультикадра (в одном физическом канале) может передаваться два полускоростных ТСН канала, каждый по 12 TDMA кадров (Т и t). Пустой 26-й TDMA кадр в полноскоростном канале ТСН отводится для канала SACCH во втором полускоростном канале ТСН. Для каждого полускоростного канала ТСН скорость передачи составляет 11,4 кбит/с; полная скорость передачи в объединенном полускоростном канале TCH/SACCH остается прежней - 24,7 кбит/с.
Быстрый совмещенный канал управления FACCH передается половиной информационных бит временного интервала TDMA кадра в канале ТСН, с которым он совмещается в восьми последовательных Т или t кадрах.
Для передачи каналов управления (за исключением FACCH и SACCH) используется 51-кадровый мультикадр.

Объединение ВССН/СССН каналов

В отличие от структуры объединенного канала TCH/SACCH, где физический канал выделяется для одного или двух абонентов, объединенный канал ВССН/СССН предназначен для всех подвижных станций, которые в одно и то же время находятся в одной соте. Более того, все подканалы, передаваемые в этой структуре, являются симплексными.

В канале передачи сигналов управления (ВССН, "сеть - подвижная станция") передается общая информация о сети (соте), в которой подвижная станция находится в данный момент, и о смежных сотах.

В канале синхронизации (SCH, "сеть - подвижная станция") передается информация о временной (цикловой) синхронизации и опознавании приемопередатчика базовой станции.

В канале подстройки частоты (FCCH, "сеть - подвижная станция") передается информация для синхронизации несущей.

Канал параллельного доступа (RACH, "подвижная станция - сеть") используется подвижной станцией в режиме пакетной передачи ALOHA для доступа к сети в случае, если надо пройти регистрацию при включении или сделать вызов.

Канал разрешенного доступа (AGCH, "сеть - подвижная станция") используется для занятия специальных видов обслуживания (SDCCH или ТСН) подвижной станцией, которая ранее запрашивала их через канал RACH.

Канал вызова (РСН, "сеть - подвижная станция") используется для вызова подвижной станции в случае, когда инициатором вызова является сеть (абонент сети).

Линия "вверх" ВССН/СССН каналов используется только для передачи канала параллельного доступа RACH, который является единственным каналом управления от подвижной станции к сети. Подвижная станция может использовать нулевой временной интервал в любом из кадров для осуществления доступа к сети.

На линии "вниз" 51 кадр группируется в 5 групп по 10 кадров, при этом один кадр остается свободным, каждая из этих групп начинается с канала FCCH, за которым следует канал SCH. Остальные 8 кадров в каждой группе образуют два блока из четырех кадров. Первый блок первой группы предназначен для канала ССН, тогда как другие 9 блоков (они называются блоками передачи сигнала вызова) используются для передачи каналов РСН и AGCH общего канала управления СССН. Таким образом, в рассматриваемом случае: 4 кадра используются для канала ВССН, 5 - для FCCH, 5 - для SCH и 36 либо для AGCH, либо для РСН (9 блоков вызова).

Каждая подвижная станция может занимать один из девяти блоков вызова, но каждый вызывной блок может использоваться для вызова более одной станции.

Полная скорость передачи для канала ВССН, а также для канала AGCH/PCH составляет 1,94 кбит/с (4х114 бит за 235 мс).

Отображение логических каналов на физические каналы осуществляется через процессы кодирования и шифрования передаваемых сообщений.

Для защиты логических каналов от ошибок, которые имеют место в процессе передачи, используют 1ри вида кодирования: блочное - для быстрого обнаружения ошибок при приеме; свер-точное - для исправления одиночных ошибок; перемежение - для преобразования пакетов ошибок в одиночные.

Для защиты каналов от подслушивания в каналах связи и управления применяется шифрование.

Дня передачи сообщений по физическим каналам используется гауссовская частотная манипуляция с минимальным частотным сдвигом (GMSK).

Модуляция радиосигнала

В стандарте GSM применяется спектрально-эффективная гауссовская частотная манипуляция п минимальным частотным сдвигом (GMSK). Манипуляция называется "гауссовской" потому, что последовательность информационных бит до модулятора проходит через фильтр нижних частот (ФНЧ) с характеристикой Гаусса, что дает значительное уменьшение полосы частот излучаемого радиосигнала. Формирование GMSK радиосигнала осуществляется таким образом, что на интервале одного информационного бита фаза несущей изменяется на 90°. Это наименьшее возможное изменение фазы, распознаваемое при данном типе модуляции. Непрерывное измене ние фазы синусоидального сигнала дает в результате частотную модуляцию с изменениемнием частоты. Применение фильтра Гаусса позволяет при дискрегном изменении частоты получить "гладкие переходы". В стандарте GSM применяется GMSK-модуляция с величиной нормированной полосы ВТ = 0,3, где В - ширина полосы фильтра по уровню минус 3 дБ, Т - длительность одного бита цифрового сообщения.

Возможности GSM

GSM относится ко второму поколению стандартов для сотовой связи, основанному на цифровой технологии. Главным достоинством стандарта является роуминг, который позволяет  пользоваться своим телефоном почти во всём мире. Реализованное в системах GSM полноскоростное кодирование речи позволяет сделать ее качество сравнимым с качеством стационарных телефонных сетей. Радиотелефон стандарта GSM можно условно разделить на две части: абонентский модуль SIM (SIM-карта) и непосредственно сам телефон, содержащий аппаратное и программное обеспечение. SIM-карта служит подтверждением подлинности абонента и содержит в своей памяти все необходимые данные, связанные с полномочиями конкретного абонента. Чтобы похититель не смог ею воспользоваться, в нее вводят специальный идентификационный номер (РIN-код). Использование SIM-карты также удобно тем, что при смене аппарата абоненту не нужно менять свой мобильный номер, он просто переставляет карту, и все сохраненные на ней данные, включая записную книжку, становятся доступными в новом аппарате. Когда SIM-карты нет в аппарате, доступ к абсолютному большинству услуг закрыт, за исключением экстренных вызовов (если позволяет сеть). Изготовить дубликат SIM-карты очень сложно и в совокупности с функциями защиты, она дает высокий уровень защиты пользователей и сетей от несанкционированного доступа.

В стандарте  введено несколько функций защиты. В первую очередь это шифрация радиоканала, которая исключает прослушивание третьей стороной, а также защита номера абонента (для предотвращения раскрытия его местонахождения). Помимо стандартных возможностей, предоставляемых операторами сотовой связи - местная, междугородная и международная связь, переадресация вызова и других, телефоны стандарта GSM дают своим обладателям ряд дополнительных функций: сохранение речевых сообщений, поступивших в период, когда абонент был недоступен (голосовая почта), прием сообщения о пришедшем факсе (факс-почта), определение номера звонящего. Предусмотрена возможность передачи коротких сообщений "из точки в точку" (пейджинга), то есть абоненты при желании могут обмениваться простыми короткими (несколько десятков символов) сообщениями (тарифы на эту услугу несколько ниже, чем на обычные переговоры). Функция мобильного модема/факса наряду с повсеместным распространением портативных компьютеров дает возможность доступа к Интернету и электронной почте через сети GSM. Эти услуги значительно увеличивают привлекательность использования телефонов GSM для пользователей.

Выводы и комментарии 

Меньшие по сравнению с другими стандартами размеры и вес телефонных
аппаратов при большем времени работы без подзарядки аккумулятора. В основном это
достигается за счет аппаратуры базовой станции, которая постоянно анализирует
уровень сигнала, принимаемого от аппарата абонента. В тех случаях, когда он выше
требуемого, автоматически снижается излучаемая мощность.
Относительно высокая емкость сети
Низкий уровень индустриальных помех в данном частотном диапазоне
Несколько неестественное звучание речи, за то нет шипения и треска
Максимальная защита от подслушивания и нелегального использования, что
достигается путем применения алгоритмов шифрования с открытым ключом.
EFR-технология являет собой усовершенствованную систему кодирования речи. 

Создание GSM  было сложной задачей, которую поставил перед собой и выполнил первоначально созданный комитет GSM, и их успех убедительно доказан уже тем, что в этом проекте удалось достичь международного сотрудничества между наукой, промышленностью и правительством. Это стандарт, который дает возможность различным телефонным сетям взаимодействовать без удушающей конкуренции, а также дает поставщикам услуг огромный потенциал для инноваций, что, конечно, выгодно пользователям, в плане как ценовых условий, так и качества предоставляемых услуг. Например, путем использования микропроцессорной технологии Very Large Scale Integration (VLSI), многие функции мобильного телефона удалось встроить в один чипсет, что сделало оборудование гораздо легче по весу, компактнее по размерам и экономичнее по расходу энергии.

Телекоммуникации развиваются в направлении персональных коммуникационных сетей, конечная цель которых может быть описана как создание возможности получения любым человеком всех коммуникационных сервисов в любое время и в любом месте, на основании отдельного идентификационного номера и при помощи компактного по размерам коммуникационного терминала. Изобилие несовместимых систем далеко отбрасывает нас от этого идеала, а отнюдь не приближает к нему. Одни экономические преимущества от использования унифицированной масштабируемой системы достаточны для того, чтобы оправдать ее реализацию, даже если не принимать в расчет несомненное удобство такой системы для людей, поскольку она дает им возможность носить с собой всего одно коммуникационное устройство повсюду, где они бывают, вне зависимости от национальных границ.

Система GSM и ее близнец, функционирующий на 1800 МГц, называемый DCS1800, представляют собой первое приближение к по-настоящему персональной коммуникационной системе. SIM-карта является еще одним фактором, приближающим нас к желаемой системе, поскольку она дает пользователям личную мобильность, в дополнение к мобильности терминала. С международным роумингом и поддержкой многих других сервисов, таких как передача данных, факсимильная связь, сервис передачи коротких сообщений и сопутствующие сервисы, дополняющие основную услугу - телефонию, стандарт GSM подошел вплотную к тому, чтобы выполнить все требования к персональной системе коммуникации: настолько вплотную, что его можно использовать в качестве базиса для европейской коммуникационной технологии следующего поколения.

Другим аспектом, в котором GSM продемонстрировал свою готовность к открытости в отношении других стандартов и способность к взаимодействию с различными сетями, является совместимость с сетью Integrated Services Digital Network (ISDN), развитой во многих индустриальных странах, в частности, в странах Европы (так называемая Euro-ISDN). GSM является первой системой, дающей возможность широко использовать в ISDN концепции Intelligent Networking, которая позволяет концентрировать и обслуживать 800 номеров в нескольких централизованных сервис-центрах, вместо того, чтобы распределять эти номера по всем коммутирующим центрам в стране. Эта концепция стоит за использованием различных регистрирующих баз данных, таких как HLR. Кроме того, для передачи служебных сигналов между этими функциональными объектами задействуется Signalling System Number 7, международный стандарт, уже используемый во многих странах и специфицированный для ISDN.

GSM –  сложный стандарт, но возможно, что это та цена, которую необходимо заплатить для того, чтобы достичь высокого уровня интеграции услуг и желаемого качества, преодолевая крайне жесткие ограничения, накладываемые радиосвязью.

Открыть полное описание стандарта GSM в формате Word 3,59 МБ  

 Опрос

 На главную


Rambler's 
Top100
 

</body></html>